Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(32): 4275-4289, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38566567

ABSTRACT

Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.

2.
Angew Chem Int Ed Engl ; : e202405863, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589298

ABSTRACT

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

3.
Science ; 382(6674): 1056-1065, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033072

ABSTRACT

The development of functionally distinct catalysts for enantioselective synthesis is a prominent yet challenging goal of synthetic chemistry. In this work, we report a family of chiral N-heterocyclic carbene (NHC)-ligated boryl radicals as catalysts that enable catalytic asymmetric radical cycloisomerization reactions. The radical catalysts can be generated from easily prepared NHC-borane complexes, and the broad availability of the chiral NHC component provides substantial benefits for stereochemical control. Mechanistic studies support a catalytic cycle comprising a sequence of boryl radical addition, hydrogen atom transfer, cyclization, and elimination of the boryl radical catalyst, wherein the chiral NHC subunit determines the enantioselectivity of the radical cyclization. This catalysis allows asymmetric construction of valuable chiral heterocyclic products from simple starting materials.

4.
Chem Asian J ; 18(13): e202300328, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37194612

ABSTRACT

Covalent organic frameworks (COFs) as metal-free photocatalysts have attracted extensive interest. However, the organic transformations photocatalyzed by COFs under mild conditions remain a challenge. Herein, a boron-dipyrromethene (BODIPY) based 1D COF, namely JNM-12, was facilely constructed by Schiff-base condensation reaction. JNM-12 exhibited strong visible-light harvesting abilities and suitable photocatalysis energy potentials, enabling the activation of O2 to superoxide anions (O2 ⋅- ) and singlet oxygen (1 O2 ) under visible light irradiation. Benefiting from these properties, JNM-12 delivered excellent photocatalytic activity in the O2 ⋅- -mediated oxidative coupling of amines and 1 O2 -engaged aerobic oxidation of enamines. Our work paves a new way for synthesis of COFs as efficient, economical, and green photocatalysts for organic synthesis.

5.
Org Lett ; 25(16): 2852-2856, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37071656

ABSTRACT

The regio- and diastereoselective hydroboration of N-aryl enamine carboxylates was achieved by dichloro-substituted N-heterocyclic carbene (NHC)-boryl radical to access the valuable anti-ß-amino boron skeleton. Excellent diastereoselectivity (>95:5 dr) was obtained using dichloro-NHC-BH3 (boryl radical precursor) and the thiol catalyst. Broad substrate scope and good functional group tolerance were demonstrated. Further transformation of the product to amino alcohol exemplified the synthetic utility of this reaction.

6.
Angew Chem Int Ed Engl ; 62(21): e202300233, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36896733

ABSTRACT

Visible-light copper photocatalysis has recently emerged as a viable technology for building sustainable synthetic processes. To broaden the applications of phosphine-ligated copper(I) complexes, we describe herein an effective metal-organic framework (MOF)-supported copper(I) photocatalyst for multiple iminyl radical-mediated reactions. Due to site isolation, the heterogenized copper photosensitizer has a significantly higher catalytic activity than its homogeneous counterpart. Using a hydroxamic acid linker to immobilize copper species on MOF supports affords the heterogeneous catalysts with high recyclability. The post-synthetic modification sequence on MOF surfaces allows for the preparation of previously unavailable monomeric copper species. Our findings highlight the potential of using MOF-based heterogeneous catalytic systems to address fundamental challenges in the development of synthetic methodologies and mechanistic investigations of transition-metal photoredox catalysis.

7.
Inorg Chem ; 61(21): 8339-8348, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35575208

ABSTRACT

Multicomponent metal-organic frameworks (MOFs) have received an increasing amount of attention due to their potential to produce new topologies, pore metrics, and functionalities compared to MOFs with a single metal cluster and one organic linker. Herein, five isoreticular Zn MOFs were obtained by mixing two types of linear ditopic linkers in a one-pot solvothermal synthesis. Interestingly, in the resulting Zn MOFs a six-connected cyclic trinuclear Zn(II) cluster and an eight-connected linear trinuclear Zn(II) cluster coexist, leading to an uncommon (6,8)-connected network. Catalytic activities toward the solvent-free Knoevenagel reactions were observed for all of these MOFs. Further experimental and computational studies suggest that they are Brønsted acid-base bifunctional catalysts. Through chemical modifications of dicarboxylate ligands, including their aromatic backbones and substituents, we have successfully implemented reticular chemistry for the modulations of pore sizes, surface areas, and catalytic performances in a series of four-component isoreticular MOFs.

8.
J Am Chem Soc ; 143(50): 21340-21349, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878287

ABSTRACT

Charge separation plays a crucial role in regulating photochemical properties and therefore warrants consideration in designing photocatalysts. Metal-organic frameworks (MOFs) are emerging as promising candidates for heterogeneous photocatalysis due to their structural designability and tunability of photon absorption. Herein, we report the design of a pyrazole-benzothiadiazole-pyrazole organic molecule bearing a donor-acceptor-donor conjugated π-system for fast charge separation. Further attempts to integrate such a photosensitizer into MOFs afford a more effective heterogeneous photocatalyst (JNU-204). Under visible-light irradiation, three aerobic oxidation reactions involving different oxygenation pathways were achieved on JNU-204. Recycling experiments were conducted to demonstrate the stability and reusability of JNU-204 as a robust heterogeneous photocatalyst. Furthermore, we illustrate its applications in the facile synthesis of pyrrolo[2,1-a]isoquinoline-containing heterocycles, core skeletons of a family of marine natural products. JNU-204 is an exemplary MOF platform with good photon absorption, suitable band gap, fast charge separation, and extraordinary chemical stability for proceeding with aerobic oxidation reactions under visible-light irradiation.

9.
Angew Chem Int Ed Engl ; 59(31): 12876-12884, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32232933

ABSTRACT

Radical borylation using N-heterocyclic carbene (NHC)-BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo- and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC-boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC-boryl radicals enabled by photoredox catalysis. NHC-boryl radicals are generated via a single-electron oxidation and subsequently undergo cross-coupling with the in-situ-generated radical anions to yield gem-difluoroallylboronates. A photoredox-catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC-boryl radicals through a single-electron-transfer pathway.

10.
Chem Sci ; 11(15): 3909-3913, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-34122860

ABSTRACT

An electrooxidative [3 + 2] annulation of phenols and electron-deficient alkenes for the synthesis of C3-functionalized 2-aryl-2,3-dihydrobenzofuran derivatives was achieved. The ring construction starts by a unique α-addition of carbon radicals derived from anodic oxidation of phenols to electron-deficient alkenes. The subsequent anodic oxidation of the resulting alkyl radical intermediates followed by trapping with the phenolic hydroxy group assembles the 2,3-dihydrobenzofuran core. Such a pathway enables the installation of various electrophilic functionalities including alkoxycarbonyl, alkylaminocarbonyl, trifluoromethyl, and cyano groups at the C-3 of the 2,3-dihydrobenzofuran framework, which is unattainable by other intermolecular reactions. The application of this method for a rapid synthesis of a bioactive natural product is demonstrated.

11.
Org Lett ; 21(20): 8414-8418, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31596598

ABSTRACT

A regioselective radical hydroboration of gem-difluoroalkenes was developed for the synthesis of α-difluoroalkylborons. The reaction features excellent regioselectivity, broad substrate scope, and good functional group capability. DFT calculations implicated the remarkable α-selectivity was driven from the kinetically and thermodynamically more favorable α-addition step. The resulting α-difluoroalkylborons could be readily converted into NHC-borane-tethered monofluoroalkenes, which demonstrated unique reactivity and applicability in the synthesis of monofluoroalkene derivatives through transformations of the boron unit.

12.
Org Lett ; 20(23): 7558-7562, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30427202

ABSTRACT

A synthetic method based on radical borylation/cyclization cascades of N-allylcyanamides was developed to construct diverse boron-substituted N-heterocycles. In the reaction process, the N-heterocyclic carbene-boryl radical underwent a chemo- and regioselective addition to the alkene moiety, followed by cyclization with the N-cyano group. The resulting amide-iminyl radical intermediates underwent further reactions to afford various boron-tethered N-heterocyclic molecules. Further transformations to access synthetically useful building blocks were also demonstrated.

13.
Org Lett ; 18(15): 3850-3, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27414955

ABSTRACT

An unprecedented application of trifluoromethanesulfonyl hydrazides as trifluoromethylating agents has been demonstrated in two vicinal difunctionalization reactions of terminal alkenes: the copper-catalyzed three-component vicinal chlorotrifluoromethylation of arylakenes with TfNHNHBoc and NaCl and the tandem trifluoromethylation/cyclization of N-arylacrylamides with TfNHNHBoc. The reactions proceeded in the presence of inexpensive oxidants under mild conditions and provided a range of structurally diverse trifluoromethyl-containing compounds with high regioselectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...